산업동향연구소
 

최근본상품 0

    prev
    /
    next

    추천상품 0

      prev
      /
      next

      장바구니 0

        prev
        /
        next

        찜하기 0

          prev
          /
          next

          북마크
          top
          페이스북 트위터 
          데이터 경제 시대, 데이터 거래 활용방안 및 전망
          판매가 380,000원  할인내역
          할인내역 380,000 원
          기본할인 38,000 원
          판매가 342,000 원

          342,000
          할인쿠폰 바로 할인받는 12.8%쿠폰  
          프로모션코드 바로 할인받는 0% - 코드
          모바일/테블릿 0%추가할인 0%추가적립
          배송 택배무료
          상품정보
          전자상거래 상품정보 제공 고시
          도서명 데이터 경제 시대, 데이터 거래 활용방안 및 전망
          저자, 출판사 하연
          크기 A4
          쪽수 306 페이지
          제품구성 도서소개, 목차, 내용
          출간일 2021년 3월 19일
          목차 또는 책소개 1. 데이터 경제(Data Economy)와 위드(With) AI 시대
          ISBN 979-11-85497-26-6
          체제 A4 / 306 페이지
          발행일 2021년 3월 19일
          수량
          총 상품금액 342,000
                  
          상품설명 상품후기 (0) 상품문의 (0) 교환/반품/배송정보

          ◎ 도서소개


          데이터 경제 시대, 데이터 거래 활용방안 및 전망에 대한 보고서 입니다.


          ◎ 목차


          제 1장. 데이터 경제(Data Economy)와 위드(With) AI 시대


          1. 데이터 경제 시대와 위드 AI
          1-1. 데이터 경제 시대 개요
          1-1-1. 포스트 코로나 시대 데이터의 중요성
          (1) 인터넷의 발전에 따른 데이터 활성화
          (2) 4차 산업혁명과 post-covid 시대
          (3) 디지털 전환
          1-1-2. 4차 산업혁명 기술과 데이터 경제
          (1) 데이터 경제 개념
          (2) 데이터 경제 등장 배경
          (3) 데이터 경제의 특징
          가. 한계비용 제로 경제(the zero-marginal-cost) 구조
          나. 양면시장(Two-sided market)
          다. 데이터(data)
          1-1-3. 4차 산업혁명과 빅데이터의 가치 창출
          1-2. 데이터 산업 개요
          1-2-1. 데이터 기술(Data Technology)
          1-2-2. 데이터 가치사슬 및 가치 평가
          (1) 데이터 가치사슬(Data Value Chain)
          (2) 데이터 가치 평가
          1-2-3. 데이터 축적
          1-2-4. 데이터 정제(Data Cleansing) 작업
          1-3. 데이터 분석 개요
          1-3-1. 데이터의 품질의 중요성
          (1) 원시 데이터(raw Data)
          (2) 다크 데이터(Dark Data)
          가. 다크 데이터(Dark Data) 개념
          나. 다크 데이터의 중요성
          다. 다크 데이터 활용 방안
          라. 다크 데이터 활용 현황
          (3) 메타 데이터(Metadata)
          가. 메타 데이터(Metadata) 개념
          나. 메타 데이터(Metadata)의 종류
          다. 메타 데이터(Metadata) 관리
          라. 메타 데이터 설계
          ① 데이터 분석에 필요한 메타 데이터
          ② 메타 데이터 통합적 연결
          ③ 메타 데이터를 활용한 데이터 분석
          1-3-2. 빅데이터 기술 개요
          (1) 빅데이터 개요
          (2) 빅데이터 분석
          (3) 데이터 레이크(Data Lake)
          (4) 빅데이터의 특징과 역할
          1-4. 위드 AI 시대 데이터의 역할
          1-4-1. 위드 AI 시대 개요
          (1) 위드 AI 시대 빅데이터와 인공지능(AI)의 관계
          (2) 위드 인공지능(AI) 시대
          1-4-2. 데이터 사이언스(Data Science)
          (1) 데이터 사이언티스트(Data Scientist)
          (2) 데이터 라벨링(Data labeling)
          가. 데이터 라벨링 개념
          나. 데이터 라벨링 특징
          다. 데이터 라벨링 가공 과정
          라. 데이터 라벨링 서비스
          마. 데이터 라벨러
          바. 데이터 라벨링 생태계 조성 및 시장 전망
          1-5. 데이터 센터
          1-5-1. 데이터 센터의 중요성
          1-5-2. 데이터 센터의 클라우드화
          1-5-3. 데이터 저장과 클라우드 기술

          1-5-4. 클라우드 시장


          2. 데이터 활용 프로세스
          2-1. 데이터 생태계
          2-1-1. 데이터 구축 및 개방
          (1) 데이터 구축
          (2) 데이터 개방
          2-1-2. 데이터 분석 및 활용
          (1) 데이터 분석
          (2) 데이터 활용
          2-1-2. 데이터 시장
          (1) 데이터 유통
          (2) 데이터 중개
          (3) 데이터 거래
          2-2. 데이터 품질 관리 시스템


          3. 데이터 산업 동향
          3-1. 공공 마이데이터 서비스
          3-1-1. 공공데이터
          (1) 공공데이터 개념
          (2) 공공데이터 개방 현황
          (3) 공공데이터 포털
          3-1-2. 마이데이터
          (1) 마이데이터 개념
          (2) 마이데이터 산업 개요
          (3) 마이데이터 접근 방식
          (4) 마이데이터 아키텍처
          (5) 마이데이터 활용
          3-2. 환경데이터
          3-3. 산업데이터
          3-4. 의료 빅데이터


          제2장 데이터 경제 시대 국내외 산업 동향 및 시장 전망


          1. 데이터 경제 시대 미래 비즈니스 생태계
          1-1. 데이터 경제(data economics) 시대 데이터 역할
          1-1-1. 데이터 경제 시대의 개요
          (1) 데이터 경제의 필요성
          (2) 데이터 경제 가치
          1-1-2. 데이터 경제 활성화
          1-2. 데이터 오너십(data ownership)
          1-2-1. 데이터 오너십(data ownership) 개요
          1-2-2. 데이터 소유권 문제
          (1) 데이터 소유권 개념
          (2) 데이터 소유권에 대한 기준
          1-3. 데이터 거래


          2. 데이터 산업 동향
          2-1. 데이터 산업
          2-1-1. 데이터옵스(DataOps)
          (1) 데이터옵스(DataOps) 개념
          (2) 데이터옵스(DataOps)의 아키텍처
          (3) 데이터옵스의 운영 프로세스
          2-1-2. AI옵스(AIOps)
          (1) AIOps 개념
          (2) AI옵스 활용
          (3) AI옵스 시장 전망


          3. 글로벌 데이터 경제 산업 동향 및 시장 전망
          3-1. 국내외 데이터 경제 정책 현황
          3-1-1. 국내 데이터 경제 정책 현황
          3-1-2. 해외 데이터 경제 정책 현황
          (1) 미국
          (2) 유럽연합(EU)
          (3) 중국
          (4) 일본
          3-2. 국내외 데이터 시장 전망



          <그림 목차>

          [그림 1] 세계 산업화 역사
          [그림 2] 데이터 품질
          [그림 3] 비즈니스 운영을 위한 데이터의 중요성
          [그림 4] 데이터 시장의 가치사슬
          [그림 5] 4차 산업혁명 vision
          [그림 6] 2019년 디지털 혁신 트렌드
          [그림 7] 새로운 산업혁명의 주체 데이터
          [그림 8] 데이터 경제의 흐름
          [그림 9] 4차 산업혁명의 작동원리
          [그림 10] 데이터 기반 결정 과정
          [그림 11] 공유경제 사업모델
          [그림 12] 분석 메카니즘
          [그림 13] 데이터와 지식의 피라미드
          [그림 14] DataPorts 아키텍처
          [그림 15] 데이터 활용 단계
          [그림 16] 스마트워치 데이터 수집 시나리오
          [그림 17] 데이터 활용 플랫폼 서비스 개요
          [그림 18] 데이터 분석 프로세스
          [그림 19] Cognitive Text Mining
          [그림 20] 데이터 변환 프로세스
          [그림 21] 원시데이터(raw data) 처리 과정
          [그림 22] 다크 데이터(Dark Data)
          [그림 23] 다크 데이터와 비정형 데이터의 차이점
          [그림 24] 다크 데이터 활용 방법
          [그림 25] 메타 데이터 모델
          [그림 26] Metadata Manager
          [그림 27] 메타 데이터 연결 아키텍처
          [그림 28] 비즈니스 메타 데이터 구현 방법
          [그림 29] 데이터 품질 프로세스 흐름
          [그림 30] 메타 데이터 관리 프로세스
          [그림 31] 메타 데이터 관리 시스템
          [그림 32] 빅데이터를 위한 메타 데이터 관리
          [그림 33] 데이터 분석 도구
          [그림 34] 데이터 분석의 특징
          [그림 35] 인공지능(AI) 및 빅데이터
          [그림 36] AI 기반 클라우드 앱과 컴퓨팅 알고리즘
          [그림 37] 인공지능의 핵심 영역
          [그림 38] 데이터 과학 솔루션
          [그림 39] 데이터 사이언스(Data Science)
          [그림 40] 머신러닝(ML) 워크 플로우
          [그림 41] 데이터 라벨링과 활용에 대한 순환구조
          [그림 42] 데이터 수집 및 키워드 라벨링 구성 과정
          [그림 43] 데이터 레이블 옵션
          [그림 44] 자율주행차량 시스템의 구성 요소
          [그림 45] 초대형 데이터 센터 각국 비중
          [그림 46] 클라우드 소프트웨어 에코시스템
          [그림 47] 멀티클라우드 아키텍처
          [그림 48] 데이터의 유형
          [그림 49] 데이터 기반 단계 성숙도 확장
          [그림 50] 데이터 댐 개념도
          [그림 51] NZTA의 개방형 데이터 프레임워크
          [그림 52] 데이터 브로커 아키텍처
          [그림 53] AI 프로젝트에 소요되는 시간 비율
          [그림 54] IoT 지원 데이터 마켓플레이스
          [그림 55] 온체인(On-Chain) vs. 오프체인(Off-Chain)
          [그림 56] 데이터 품질 관리 표준
          [그림 57] 공공 마이데이터 서비스
          [그림 58] 오픈데이터 플랫폼
          [그림 59] 범정부 데이터 플랫폼 개념도
          [그림 60] 오픈 API 아키텍처\
          [그림 61] openPDS
          [그림 62] 마이데이터 접근 방식
          [그림 63] 마이데이터 동의 관리 시스템
          [그림 64] 마이데이터 아키텍처
          [그림 65] 지구 환경 문제
          [그림 66] 환경 생태계
          [그림 67] 환경데이터 관리 프로세스
          [그림 68] 인터스트리 4.0
          [그림 69] 데이터 기반 인터스트 4.0
          [그림 70] EMR의 구조
          [그림 71] 의료데이터 기반 디지털 헬스케어
          [그림 72] 데이터 경제의 가치창출 체계
          [그림 73] 데이터 경제(Data Economy) Framework
          [그림 74] 하루동안 생산되는 데이터 양
          [그림 75] 데이터 가치 창출 및 데이터 경제 활성화 기대 효과
          [그림 76] 블록체인과 데이터 경제
          [그림 77] 데이터 경제 시스템
          [그림 78] 마이데이터(My Data)의 소유자
          [그림 79] 데이터 소유자
          [그림 80] 데이터 소유권, 보안, 애플리케이션의 관계
          [그림 81] 데이터 값 주기
          [그림 82] 개인 데이터 생태계
          [그림 83] 데이터 소유권 및 관리
          [그림 84] 데이터 거래 절차
          [그림 85] 데이터옵스(DataOps) 개요
          [그림 86] 데이터옵스(DataOps) 아키텍처
          [그림 87] 데이터옵스(DataOps) 라이프사이클
          ​[그림 88] 데이터 옵스를 사용한 통합 접근 방식
          [그림 89] 머신러닝과 DataOps 사례
          [그림 90] AIOps 접근 방식
          [그림 91] IT 운영 관리에 통찰력을 제공하는 AIOps 플랫폼
          [그림 92] AI옵스 플랫폼 시각화
          [그림 93] AI옵스 플랫폼의 논리적 구조
          [그림 94] 한국판 뉴딜의 구조와 추진체계
          [그림 95] 데이터 수집 체계
          [그림 96] 영국의 데이터 포털 사이트
          [그림 97] 데이터 활용을 둘러싼 일본 정책 추진 현황
          [그림 98] 국내 빅데이터 및 분석 시장 전망(2019~2023년, 단위: 십억)
          [그림 99] 국내 데이터산업 시장 규모 전망


          <표 목차>

          [표 1] 빅데이터 유형 및 데이터의 사용 사례
          [표 2] 데이터재의 특성
          [표 3] 디지털 플랫폼의 유형 및 글로벌 디지털 생태계
          [표 4] 전세계 데이터 규모 현황 및 데이터 통합
          [표 5] 데이터 경제 시스템 및 데이터 경제를 선도하는 국가 순위
          [표 6] 데이터 형태
          [표 7] 데이터 가치 사슬 및 데이터 경제의 가치창출 체계
          [표 8] 데이터 경제 주요 업체 현황
          [표 9] 데이터의 자산 가치를 높이는 요인
          [표 10] 고품질 데이터 특성 및 데이터 변환 기술
          [표 11] 주요 데이터 전처리 기법 및 데이터 처리 과정
          [표 12] 빅데이터 처리 과정별 기술 영역
          [표 13] 품질측정의 기준인 주요 품질지표 예시 및 데이터 처리의 운영
          [표 14] 데이터 수명 주기에 따른 각 과정
          [표 15] 데이터 관리 체계에서 발생하는 문제[표 16] 다크 데이터 체크리스트(Dark Data Checklist)
          [표 17] 데이터 유형
          [표 18] 메타 데이터 및 관리 모델
          [표 19] 데이터 웨어하우스 VS 데이터 레이크의 차이점 및 데이터 레이크 프로세스
          [표 20] 데이터의 변화와 IoT에서 빅데이터 분석의 역할
          [표 21] 데이터 라벨링 작업 분류 및 AI 학습용 데이터 구축 방법
          [표 22] 주요국의 데이터 경제 관련 정책 추진 현황
          [표 23] 데이터 경제 패러다임 전환 특성과 내용
          [표 24] 빅데이터 분석 플래폼 구축 프레임워크 및 데이터 분석
          [표 25] 데이터 생태계 활성화를 위한 주요 정책 과제 및 데이터 활용주기
          [표 26] 사전준비 핵심 점검요소
          [표 27] 국내 데이터 유통시장에서의 가격결정체계
          [표 28] 데이터 가격 영향 요소
          [표 29] 데이터 유통시장의 이해관계자
          [표 30] 데이터 거래 장애요인 및 데이터 산업 전반에 대한 전문가 의견
          [표 31] 데이터 거래절차 및 금융데이터거래소의 데이터 거래 과정
          [표 32] 사업영위 분야별로 살펴본 데이터 판매 장애요인
          [표 33] 데이터3법 개정안 주요 내용
          [표 34] 데이터 품질 관리 시스템의 4가지 필수 요소 및 데이터 품질관리 주기
          [표 35] 데이터 품질 관리 구성별 세부 내용 및 시스템화
          [표 36] 공공 마이꾸러미 서비스 개시 목록
          [표 37] 범정부 데이터 플랫폼의 주요 구축 목표
          [표 38] 마이데이터 서비스 제공 데이터
          [표 39] 금융분야 마이데이터 서비스 유형
          [표 40] 마이데이터 생태계
          [표 41] 해외 마이데이터 적용 사례
          [표 42] 주요 행위자별 마이데이터 기대 효과 및 마이데이터 인프라
          [표 43] 의료 빅데이터 활용 강화 분야 및 라이프로그 모니터링
          [표 44] 데이터 가치사슬
          [표 45] 데이터 경제 동향
          [표 46] 주요국의 데이터 경제 정책대응 현황
          [표 47] 빅데이터 관련 중국 정부 정책 및 주요 내용 정리
          [표 48] 해외 주요 기업 현황


          2021년 국내외 전기차 시장과 충전인프라, 배터리 사업화 동향과 전략
          400,000 won
          360,000 원
          4차 산업혁명 시대의 핵심, ICT 기술별 연구개발 및 특허 동향 분석
          인공지능(머신러닝/딥러닝)ㆍ빅데이터/데이터센터ㆍIoT/IIoTㆍ블록체인/가상화폐ㆍ사이버 보안ㆍ디지털 트윈ㆍ클라우드 컴퓨팅ㆍ5G
          440,000 won
          396,000 원
          2021 국내외 수소자동차 기술개발 동향과 시장전망
          400,000 won
          360,000 원
          2021 화장품 시장동향 및 전망
          400,000 won
          360,000 원
          상품설명 상품후기 (0) 상품문의 (0) 교환/반품/배송정보



          상품설명 상품후기 (0) 상품문의 (0) 교환/반품/배송정보



          상품설명 상품후기 (0) 상품문의 (0) 교환/반품/배송정보

          **배송정보**


          - 배송료    : 무료
          - 배송방법 : 택배 (등기발송)
          - 배송일정 : 결제일(무통장입금 및 카드결제) 기준으로 합니다.
                           주문신청후 1~2일 소요, 주말 또는 공휴일이 있을 경우 1~2일이 더 소요될 수 있습니다


          **교환/반품 정보**


          - 상담전화 : 010-9489-1279 (대표전화)

          - ​고객의 귀책사유가 없는 한, 수령 후 7일이내 반품,교환,환불이 가능합니다.

          - 공급받으신 도서의 내용이 표시.광고 내용과 다르거나 다르게 이행된경우에는 공급받은날로부터 20일 이내 교환, 환불이 가능합니다

          - ​반품, 환불시 단순 고객변심에 의한 반품, 교환에 소요되는 배송비는 고객님께서 부담하셔야 됩니다. 물론 물품이상시 발생되는 모든 제반  비용은 본 사에서 전액 부담합니다.





          전체도서
          바이오 / 헬스케어 / 의료기기
          디스플레이 / 3D프린트 / VR,AR
          인공지능 / 로봇 / 사물인터넷
          에너지 / 신소재 / 환경
          반도체 / 컴퓨터 / ICT
          자동차 / 스마트팩토리
          기타도서


          4차산업 보고서 출판사 모집



          세미나 개최 담당자분들
          연락 주세요



          산업동향연구소
          연구인력 모집





          회사명 : 산업동향연구소 | 사업자등록번호 : 275-95-00726 [사업자정보확인]
          주소 : 서울특별시 중랑구 겸재로15길 68-3 1층
          통신판매업 신고 : 제 2018-서울중랑-0784호 | 연락처 : 02-493-1279 | FAX : 02-493-1279
          개인정보관리자 : 정찬용 | 대표자 : 정찬용
          contact : admin@labbook.co.kr for more information